

A methodology for monitoring traffic flow and air pollution in urban areas

SYSORM 2019 5th June 2019 José Ángel Martín-Baos Ricardo García-Ródenas Luis Rodríguez-Benitez

Content

2

Proyect awarded by:

Research Question

Emission monitoring:Low cost devicesDistributed environment

Environmental labels in Spain

DGT

Source: www.cocheando.es

Motion Vectors

Algorithm to count vehicles

n_vehicles $\leftarrow 0$ car_detected \leftarrow False growth $\leftarrow 0$

GROWTH_LIMIT $\leftarrow 5$ WIDTH_THRESHOLD $\leftarrow 10$ HEIGHT_THRESHOLD $\leftarrow 150$ SMOOTH_ORDER $\leftarrow 6$

/* Repeat for each frame in the video */

mv ← **smooth**(mv, SMOOTH_ORDER)

Algorithm to count vehicles

```
/* Repeat for Left and Rigth direction */
```

```
if mv[previous frame] < mv and growth < GROWTH_LIMIT then
    growth ← growth + 1;
else if mv[previous frame] > mv and growth > - GROWTH_LIMIT then
    growth ← growth - 1;
end
```

Algorithm to count vehicles

DEMO

~ 90 % average percentage hits using 23 test videos in a street with one line in each direction

0,4% of the information used compared to traditional video analysis techniques

~ 0,0024 seconds per frame

Last data of device 1: Escuela Superior de Informática. Ciudad Real, España.

Web Page

Conclusion

ALGORITHM

Motion vectors allows to use statistical techniques to detect vehicles without processing the image itself.

~90% of vehicles detected.Low CPU resources (~10%).Fast (~0,0024 s/frame)

MONITOR

We are able to **monitor** simultaneously **road traffic** and **air pollution** using a low-cost device.

FUTURE WORK

Implement a machine learning based methodology to **estimate** the **air quality evolution** using the data provided by this infrastructure and **recommend** palliative actions.

COMUNICATION

We are able to communicate all the information to the cloud using IBM services, were it can be processed.

Escuela Superior de Informática

Thank you for your attention

José Ángel Martín Baos

Universidad de Castilla-La Mancha

JoseAngel.Martin@uclm.es
https://linkedin.com/in/joseangelmartinb/