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Numerical results

GKLR Python package

[

 Ubuntu 20.04 LTS
« 3.8 GHz 12 core AMD Ryzen
« 32 GB of RAM

https://github.com/JoseAngelMartinB/gklr



&) LPMC

« Single day travel diary data from 2012 to 2015.
* 81,096 surveys with 31 variables.
 After pre-processing, 20 variables selected.

€8 3% & 4% 5 3% % 18%
| NTS

* ML focused dataset:
« Data from a Dutch transport survey from 2010 to 2012.
« Environmental data.

« 230,608 surveys with 16 variables.

.
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KLR estimation problem

Spatial complexity to store the Gram matrix

O(N?)

&@ Computational cost of V

O(N?%)



#::1 Nystrom method
Vi = Ki(xi

K~Ky, K, -KJ,, withLl <N

Vi =Ky, (Ki, (K}, o))

&@ Complexity O(N - L)



#:5) Nystrom method

Random strategy
Nystrom KLR

Divide-and-conquer ridge-leverage strategy
DAC ridge-leverage Nystrom KLR

A
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K-means strategy
K-means Nystrom KLR

A
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Recursive ridge-leverage strategy

RLS-Nystrom KLR

A
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Experiment 1: Comparison Nystrom KLR methods
NTS
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Experiment 2: Comparison Nystrom KLR and ML

LPMC NTS
DCA GMPCA Estimation time (s) DCA GMPCA Estimation time (s)
MNL 72.54 4885  623.43 65.42 43.83 855.61
LinearSVM 72.13 4892  691.21 64.64 43.72  3,963.52
| @ RF 7358 50.14 2.67 68.19 46.84  1.87
@ XGBoost 74.71 51.85 82.04 68.72 48.05 138.72
@ NN 73.87 50.72 5.25 68.40 47.12 7.51
| Nystrém KLR 73.45 50.41* 303.39 64.98 44.53* 776.46
%)? k-means Nystrom KLR 73.46 50.35 309.40 65.09* 44.50 719.25
DAC ridge-leverage Nystrom KLR 73.49 50.33 507.37 64.91 44.41 1,010.26
RLS-Nystrom KLR 73.62* 50.43  324.85 64.81 44.52  727.24




Memory usage

LPMC NTS

22GB 194 GB

L = 500 L =1000



Memory usage

LPMC NTS

ozee X 110 1.2 GB X 160

L = 500 L =1000



Conclusions im=

B \ystrom KLR =

K-means Nystrom

KLR

Allow to apply KLR
to large datasets

It also reduces the
number of variables to
be estimated

KLR results highly
depends on its
hyperparameters

Investigate the KLR
estimation process




Thanks for your attention!
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Supplementary material

For the curious minds @




ML methods

Random Forests (RF) Support Vector Machines (SVM)

AAKRAD

Gradient Boosting Decision Trees (GBDT)

KRENEN




Hyperparameters tuning of ML models

SYNTHETIC DATASETS

Logit f; = 1.0 Linear

Probit g; = 1.0 Linear

Logit 8; = 2.0 Linear

Probit §; = 2.0 Linear

Logit 8; = 0.5 Linear

Probit f; = 0.5 Linear

Logit 8; = 1.0 CD

Probit gy =1.0 CD

Logit 5; =2.0 CD

Probit g; = 2.0 CD

Training (70%)

min Cross-Entropy Loss

(CELL)
- Asvm
ARF AXGBoost
ANN ADNN

Logit 8y =0.5 CD

Probit 5; = 0.5 CD

REAL DATASETS

Optima NTS LPMC

DATASETS

Test (30%)

NN

HYPERPARAMETER ()

TUNING

Accuracy & GMPCA
MNL SVM
>
RF XGBoost
NN DNN
VALIDATION OVER
TRAINING SET
Accuracy & GMPCA
TN S Vi SVM
RF XGBoost
>
NN DNN

TESTING OVER
TEST SET




Hyperparameters space of ML models

Technique A Name of the hyperparameter Notation Type Search space NTS LPMC

LinearSVM Cost (or soft margin constant) c Loguniform distribution  [0.1, 10] 2.704 6.380
Number of decision trees B Uniform distribution [1,200] 153 180
Max features for the best split m Uniform distribution [2, N° features] 8 16

RF Max depth of the tree d Uniform distribution [3,10] 10 10
Min samples to be at a leaf node l Uniform distribution [1,20] 3 11
Min samples to split an internal node s Uniform distribution [2,20] 15 14
Goodnes of split metric c Choice [Gini|Entropy] Entropy  Entropy
Maximum tree depth d Uniform distribution [1,14] % 7
Minimum loss for a new split Y Loguniform distribution  [1074, 5] 4.970 4.137
Minimum sum of instance weight needed in a child w Uniform distribution [1,100] 1 32
Maximum delta step in each tree’s weight o Uniform distribution [0,10] 0 4

XGBoost Subsample ratio of the training instance s Uniform distribution [0.5,1] 0.823 0.935
Subsample ratio of columns when constructing each tree ¢, Uniform distribution [0.5,1] 0.553 0.679
Subsample ratio of columns for each level C Uniform distribution [0.5,1] 0.540 0.629
L1 regularisation term on weights @ Loguniform distribution  [1074, 10] 0.028 0.003
L2 regularisation term on weights A Loguniform distribution  [1074, 10] 0.264 0.5¢73
Number of boosting rounds B Uniform distribution [1,6000] 4376 2789
Number of neurons in hidden layer n Uniform distribution [10,500] 10 51
Activation function iF Choice [tanh] tanh tanh
Solver for weights optimisation S Choice [LBFGS|SGD|Adam] LBFGS SGD

NN Initial learning rate Mo Uniform distribution [1074,1] 0.416 0.041
Learning rate schedule n Choice [adaptive] adaptive  adaptive
Maximum number of iterations t Choice [109] 106 106
Batch Size BS Choice [128]256|512]|1024] 512 1024
Tolerance for optimisation tol Choice [1073] 1073 1073
Kernel function K Choice [RBF] RBF RBF

KLR Parameter of the Gaussian function 0% Loguniform distribution  [1073,107!] 0.037 0.054
Tikhonov penalization parameter A Fixed 10-6 10-6 10-6
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Revisiting kernel logistic regression under the random utility models perspective. An
interpretable machine-learning approach
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ABSTRACT KEYWORDS
The success of machine-learning methods is spreading their use to many different fields. This paper analyses Random utility models;
one of these methods, the Kernel Logistic Regression (KLR), from the point of view of Random Utility Model kernel Logistic Regression;

(RUM) and proposes the use of the KLR to specify the utilities in RUM, freeing the modeler from the need to machine Lea"‘"‘g{
postulate a functional relation between the features. A Monte Carlo simulation study is conducted to #{:’:gness to Pay; value of
empirically compare KLR with the Multinomial Logit (MNL) method, the Support Vector Machine (SVM)

and the Random Forests (RF). We have shown that, using simulated data, KLR is the only method that

achieves maximum accuracy and leads to an unbiased willingness-to-pay estimator for non-linear phenom-

ena. In a real travel mode choice problem, RF achieved the highest predictive accuracy, followed by KLR.

However, KLR allows for the calculation of indicators such as the value of time, which is of great importance

in the context of transportation.



(Penalised) Maximum likelihood estimation

L(a) = HHIP(l | X, a; )Yin
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Algorithm 1: Line search method

Input : The total number of iterations 7" to be performed
The hyperparameters of the optimisation method
Output: The parameter vector wry; of the optimised model
1 Choose an initial guess w;
2 fort=1,2,...7T do
3 Determine the search direction g(w;)
4 Choose a learning rate oy > 0
5 Update the parameter vector as w;,1 = w; — a;g(wy)

GD.: Quasi-Newton: Newton:
g(w;) = —VF(w,) g(w;) = —HVF(w;) g(w;) = —[VEF(we)] 7' VF (wy)
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MNL model considered for the experiments

The MNL is going to be used as the baseline model for this experiment. We have considered linear utility functions
for each dataset. For the LPMC dataset we have defined an utility function where all the features were selected as
individual specific except for the following features that were selected as alternative specific attributes:

e Walk: distance and dur_walking.

e Bike: distance and dur _cycling.

e Public transport: cost_transit, dur_pt_access, dur_pt rail, dur_pt_bus, dur_pt_int_waiting, dur_pt_int_walking, and
pt_n_interchanges.

e Car: cost_driving total and dur_driving.

For the NTS dataset linear utilities specified over all the attributes have been considered, using different parameters
for each alternative.



Results for the LPMC dataset
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