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ABSTRACT

The success of machine-learning methods is spreading their use to many different
fields. This paper analyses one of these methods, the Kernel Logistic Regression
(KLR), from the point of view of Random Utility Model (RUM) and proposes the
use of the KLR to specify the utilities in RUM, freeing the modeller from the need
to postulate a functional relation between the features. A Monte Carlo simulation
study is conducted to empirically compare KLR with the Multinomial Logit (MNL)
method, the Support Vector Machine (SVM) and the Random Forests (RF). We
have shown that, using simulated data, KLR is the only method that achieves max-
imum accuracy and leads to an unbiased willingness-to-pay estimator for non-linear
phenomena. In a real travel mode choice problem, RF achieved the highest predictive
accuracy, followed by KLR. However, KLR allows for the calculation of indicators
such as the value of time, which is of great importance in the context of transporta-
tion.

KEYWORDS
Random Utility Models; Kernel Logistic Regression; Machine Learning;
Willingness to Pay; Value of Time

1. Introduction

Nowadays, Artificial Intelligence (AI) has gained great popularity due to its suc-
cess in applications such as autonomous vehicles, intelligent robots, image and voice
recognition, automatic translation, etc. The construction of these intelligent machines
is mainly based on Machine Learning (ML) methods, which has led to an increased
use of these methods and a growing interest in expanding the domain of applications
where ML methods are applied, such as in the field of transport modelling.
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Traditionally, travel behaviour research has been primarily supported by discrete
choice models, which describe how a rational decision-maker chooses an alternative
from among a set of choices depending on the attributes of each one of the alternatives
and the characteristics of the individual (Ben-Akiva and Bierlaire, 1999a; McFadden,
1978; Train, 2009). Random Utility Model (RUM) assume that in the decision process
there are some latent (unobservable) functions, called utility functions, which measure
the interest of each alternative to an individual. The decision-maker is assumed to be
rational, i.e. they choose the alternative that maximises their utility.

In RUM the utility of each alternative is the sum of two terms, one deterministic and
one stochastic. With respect to the stochastic part, the probability distribution de-
termines the resulting model. The most widespread example is the Multinomial Logit
(MNL) model, which is obtained when a independent and identically distributed (i.i.d.)
Gumbel distribution is assumed for the stochastic term. These models are estimated
using a maximum likelihood estimation methodology, which allows an asymptotic dis-
tribution of the estimators to be determined and makes it possible to test hypotheses
with respect to the values of the parameters. Linear and non-linear functions in the
parameters can be used to define the deterministic part. Many authors have already
pointed out that non-linear utility functions are more suitable for some applications,
such as departure time choice. However, there are two main limitations when it comes
to non-linear utility functions: firstly, choosing the right function; innumerable func-
tions have been proposed and each of them gives a very different result; and secondly,
calibrating the parameters is also problematic. As a result, linear functions are often
used by both researchers and practitioners in preference to non-linear ones.

Nowadays, the scientific community is evaluating the classical RUM with the new
proposals based on ML. Preliminary results have revealed a significantly higher pre-
dictive capacity of ML methods, such as Hagenauer and Helbich (2017); Wang et al.
(2019b); Cheng et al. (2019), which encourages further investigation. However, there
are also studies with apparently contradictory results that can be explained by the dif-
ferences in the adjustments of the hyperparameters, or in the differences between the
problems themselves. As regards the disadvantages of introducing these new methods,
the difficulty or impossibility of obtaining econometric information with these new
proposals is highlighted. These two points motivated us to analyse the Kernel Logistic
Regression (KLR) technique, whose application in the field of transport is innovative.
This method can be considered as the introduction of choice probabilities into the
Support Vector Machine (SVM), a method that shares a prominent place in the ML
community along with Deep Neural Networks and ensemble methods. In this paper
the KLR technique is reinterpreted within the RUM framework, in order to guaran-
tee its interpretability and the calculation of econometric indices. Then, a simulation
study is conducted, which allows the evaluation of the predictive capacity of the most
promising ML proposals with respect to the maximum predictive capacity that can be
obtained from the simulated data and the effect of compliance with the assumptions
used in deriving RUM on the performance of ML methods.

This paper is organised as follows. First, Section 2 describes the increasing interest
in finding alternative methods to RUM in modelling individual behaviour, focusing
our attention on ML techniques and the interpretability of those methods. Section 3
introduces RUM and KLR methodologies in detail. Next, Section 4 sets out how to
compute interpretable economic information on both RUM and KLR models. Then,
Section 5 presents two computational experiments: a Monte Carlo simulation study
and a real-world travel mode choice problem. Finally, Section 6 presents the main
conclusions.
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2. Literature Review

Discrete choice methods based on RUM (McFadden, 1978; Ben-Akiva and Lerman,
1985; Ben-Akiva and Bierlaire, 1999a; Train, 2009) have been developed over the
last four decades, and they have now acquired a high degree of sophistication. These
models have dominated the analysis of travel behaviour since their formulation. Rasouli
and Timmermans (2012) review some prior works on RUM applied to travel demand
forecasting and identify gaps in the literature and future research.

Nowadays, there is increasing interest in alternative methods to RUM with the aim
of making them more flexible and adaptable to different applications. Discrete choice
modelling can also be considered as a classification problem, in the sense that the
output is a categorical variable, i.e. the choice; therefore, ML methods can provide
an alternative to the traditional RUM. Over the last few years, ML methods have
been successfully applied to a wide variety of fields. Fernández-Delgado et al. (2014)
conducted an extensive study with 179 ML classifiers over a total of 121 datasets from
various domains and found Random Forests (RF) to be the best classifiers. Nonethe-
less, Wainberg et al. (2016) nuance their results due to certain methodological issues,
and find that RF does not have significantly higher accuracy than SVM and neural
networks.

In the transport field, a large number of recent studies suggest that individual
travel behaviour can be accurately estimated using ML classifiers. In addition, these
studies generally affirm that ML classifiers outperform the traditional RUM, such
as the MNL. The work of Hagenauer and Helbich (2017) assesses seven automatic-
learning methods applied to a transport-choice study on a sample of daily trips. These
authors found that ML methods achieve better results than the MNL model, and
that the RF technique could be the most promising method. Recent studies of Cheng
et al. (2019) and Lhéritier et al. (2019) found that the RF method outperforms the
standard and the latent class MNL model in terms of accuracy and computational
time when they are applied to a travel mode choice and an airline itinerary choice
problem, respectively. Wang and Ross (2018) reported that extreme gradient boosting
models have higher prediction accuracy than the MNL. Lindner et al. (2017) show
that artificial neural networks and classification trees provides good estimations for
travel mode choice problems. Moreover, a recent work of Cheng et al. (2019) applies
an ensemble-based MNL model obtaining better prediction results than MNL and the
possibility to deal with high dimensional data efficiently.

One of the first studies to combine machine-learning techniques and MNL in mod-
elling transport was Celikoglu (2006), which specifies the utilities of the MNL using
neural networks that were based on radial basis functions (RBFNN) and generalised
regression (GRNN). The author argues that this hybrid model improves the perfor-
mance of a basic MNL model, whereas a basic artificial neural network does not exceed
the performance of the MNL.

RUM allow a set of measures such as Willingness To Pay (WTP), Value of Time
(VOT), elasticities, market shares, etc. to be obtained, which allow the result of any
intervention in the transport system to be assessed. Several proposals have been pre-
sented in the literature on how to calculate these indices using ML methods. They are
based on the numerical approximation of probability derivatives with respect to the
feature vector. Zhao et al. (2020) use this technique to estimate marginal effects and
arc elasticities. Wang et al. (2019a) use the knowledge of RUM to design a particu-
lar deep neural network architecture with alternative-specific utility functions. This
model exhibits some computational difficulties in calculating the probabilities of the
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alternatives and, therefore, in calculating the indicators as well. These problems stem
from the large variability of individual models due to optimisation difficulties in the
minimisation of the non-convex risk function of deep neural networks.

In this paper we are interested in ML methods with some mechanisms that can
be analogous to the utility functions defined in RUM. The combination of MNL with
radial basis functions is known in the ML community as Kernel Logistic Regression
(KLR) (Zhu and Hastie, 2005; Cawley and Talbot, 2005; Maalouf and Trafalis, 2011;
Liu et al., 2016; Ouyed and Allili, 2018; Mart́ın-Baos et al., 2020). The motivation
underlying the use of this method, as opposed to other prominent ML methods such
as RF, is that it allows for the identification of utility functions. In KLR the parameter
estimation problem is based on a penalised maximum likelihood estimation in which
the goodness of fit criterion weighs the empirical risk and its complexity. To operate
with KLR models it is sufficient to choose one of the so-called kernel functions. These
models have also been derived from Gaussian Process (GP) and, in certain areas,
they are known as kernel-based MNL approaches, which allude to a common way
to define the non-parametric utilities based on kernels. The non-linear MNL models
require the modeller to specify a functional expression based on the attribute set and
a parameter vector (parametric utilities), while the kernel-based MNL addresses non-
linearity by using semi- or non-parametric utility specifications that do not require a
priori assumptions on the functional form of the logit link.

Few papers have considered the use of non-parametric utilities. One of the studies
that can be considered seminal is Abe (1999), which introduced a spline-based utility
specification in a semi-parametric MNL. Other types of radial basis functions have been
used, such as penalised B-spline functions (Kneib et al., 2007) or cubic spline functions
(Fukuda and Yai, 2010). Espinosa-Aranda et al. (2018) propose a Nested Logit (NL)
model with restrictions in which utilities are specified by radial basis functions. This
paper generalises the KLR method to a constrained NL model in which the constraints
reflect the exogenous or endogenous factors affecting the decision process.

The kernel-based MNL has seldom been used in empirical applications. Langrock
et al. (2014) apply this approach to analyse party preferences based on the characteris-
tics of the individuals. Espinosa-Aranda et al. (2015) and Garćıa-Ródenas and López-
Garćıa (2015) use the kernel-based NL model in a passenger-centred train-timetabling
problem. Recently, Bansal et al. (2019) uses this methodology to analyse the factors
associated with institutional births (as opposed to home births) in India.

The literature review shows that the use of non-parametric utilities has not been
extensively applied in the calculation of certain econometric indicators. This paper
analyzes from a computational viewpoint the use of KLR to obtain these indices.

2.1. Major contributions

A preliminary work from the authors (Mart́ın-Baos et al., 2020) suggests the use
of the KLR method as a promising tool in modelling individual behaviour. KLR has
potential use in a constellation of disciplines such as marketing research, social sciences,
health economics, among others. However, that work focuses only on comparing the
goodness of fit between the MNL and the KLR.

In this paper, transport research has been taken as the reference point. The contri-
butions of this work can be summarised as follows:

• It presents a review of KLR methods from a RUM perspective, showing that
these approaches provide a way to specify non-parametric utilities, avoiding the
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requirement for the modeller to explicitly state a functional expression for these
utilities.
• It enriches the comparison of ML methods with RUM found in the literature,

which are mainly limited to analysing which methods have the highest predictive
capabilities in discrete choice problems, and rarely examine the behavioural out-
puts that can be derived from ML models and compares the results with those
obtained for MNL.
• It performs a controlled computational experiment using Monte Carlo simulation

methods, to motivate the use of KLR when dealing with non-linear phenomena.
• It has been shown that KLR is capable of obtaining unbiased estimates of WTP

for non-linear utilities without the need to know their functional expression.
• Given that the application of KLR is problematic due to the resource-intensive

nature of KLR estimation process, it proposes the use of the L-BFGS-B algorithm
to estimate the KLR model. This algorithm reduces model estimation time by a
factor of 8–15, compared to the BFGS or Newton’s method.
• It includes the development of a Python package for the estimation of KLR

method, which is called PyKernelLogit. This package has been used in the nu-
merical section of the paper.

3. RUM and KLR methodologies

In this section the RUM and KLR methods are reviewed in order to introduce a
common notation to observe the KLR methods from a RUM perspective, enhancing
its use in the transport research community.

3.1. Random utility models

As described in Ben-Akiva and Bierlaire (1999b), utility theory assumes that the
decision-maker’s preference for an alternative can be captured by a value, which is
called utility, and the decision-maker selects the alternative with the highest associated
utility from their choice set. This approach has limitations in practical applications
because the underlying assumptions of this concept are often violated. Utility theory
assumes that the decision-maker has perfect discriminatory capacity, but the analyst
has incomplete information and, therefore, uncertainty has to be taken into account
in the specification of the utilities.

In RUM the utility defined for a decision-maker n when choosing an alternative i
from the choice set C = {1, . . . , I} is given by

Uin = Vin + εin, (1)

where Vin is the deterministic (also called systematic) component of the utility, and
εin is the unobserved component, which is a random term used to include the impact
of all the unobserved variables on the utility function. Hence, the probability that a
decision-maker n chooses an alternative i from the choice set C is

Pin = P (Uin ≥ Ujn ∀j ∈ C) = P
(
Uin = max

j∈C
Ujn

)
. (2)

Some assumptions are necessary to make the random utility model operational. The
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hypothesis about the error distribution εin determines the probability of choosing each
alternative. The MNL models assume that εin are independently Gumbel distributed
with variance σ2 = π2/(6µ2), where µ is the Gumbel scale parameter and the location
parameter is reset such that the expected value of the Gumbel error term is zero.
Therefore, in this case the probability of each alternative is given by the expression:

Pin =
exp(Vin)∑I
j=1 exp(Vjn)

, (3)

where I is the total number of alternatives.
These models have been generalised in multiple directions. For instance, more gen-

eral distributions have been assumed, such as Generalised Extreme Value (GEV),
Generalised Nested Logit (GNL) or Cross-Nested logit (CNL) models. All these mod-
els have closed forms for the calculation of the probabilities. Moreover, errors have also
been modelled assuming a multivariate normal distribution leading to the Multinomial
Probit (MNP) model. Other models assume that the systematic part varies from one
decision-maker to another, assuming the parameters are a normal multivariate vari-
able. These models are known as Mixed Logit (MXL) models. MNP and MXL models
do not have closed forms for calculating probabilities and require the approximation
of Gaussian integrals.

The RUM framework is completely specified once the functional form of the deter-
ministic utility and the distribution of the error term are specified. The utility functions
depend on a vector of parameters which needs to be estimated. We denote this func-
tional relationship by Vin = Vi(xin|β). For this purpose, it is assumed that a sample
Xn = {xin}Ii=1 of features for each decision-maker n = 1, · · · , N has been observed.
In addition, the decisions made by each of the decision-makers have been collected
and stored in the matrix y, where yin = 1 if decision-maker n chooses alternative i or
yin = 0, otherwise. The likelihood of the sample y is

L(β) =

N∏
n=1

I∏
i=1

P(i|Xn,β)yin . (4)

The estimate of the β parameters of the utilities is obtained from Penalised Maxi-
mum Likelihood Estimation (PMLE), by solving

Maximise
β

logL(β)− λP(β), (5)

where λ is a penalisation parameter, which controls the trade-off between goodness of
fit and complexity of the model, and the penalisation term P is defined by a convex
function over the parameters. The canonical method for estimating β is the Maximum
Likelihood Estimation (MLE), obtained by setting λ = 0. A fundamental property of
the MLE is that the estimate has an asymptotic multivariate normal distribution. The
Ridge and Lasso estimations are among the simple techniques used to overcome the
over-generalisation or over-fitting problem. The Lasso method uses the penalisation
P(β) = ‖β‖1 and the Ridge method uses P(β) = ‖β‖22.

Once the main concepts related to the RUM model have been established, the next
section introduces KLR.
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3.2. Multinomial kernel logistic regression

Many ML methods approach the problem of classification from a non-statistical
point of view. These procedures do not intend to explain the process of choosing for a
specific user but to develop procedures with the smallest classification error. KLR is
considered a variant of SVM (Cortes and Vapnik, 1995), which not only predicts the
classification of an object (an individual’s choice), but also estimates the probability
of belonging to each category.

KLR builds several latent functions, Vi(x) for all i ∈ C, which are equivalent to
the systematic utility functions of RUM and, therefore, they are denoted in the same
way. Nevertheless, KLR operates with this latent functions as black boxes where the
relationship between the feature vector and the utility is not explicitly stated. These
latent functions Vi : X 7→ R for i = 1, · · · , I are searched within function spaces named
Reproducing Kernel Hilbert Spaces (RKHS). The RKHS space is a vector space which
is univocally generated by the so-called kernel function k(x,x′), and its associated
RKHS space is denoted by Hk. The family of functions {k(x,x′)}x′∈X constitutes
a basis of the vector space. Any element from Hk can be represented as a linear
combination of basis elements, in particular for Vi(x) ∈ Hk. The expression of the
latent functions, which from now on will be referred to as utilities, is given by:

Vi(x|α) =

N∑
n=1

αnk(xin,x). (6)

The main difference between the approach followed by the KLR models, which
is referred to as non-parametric, and that followed by RUM, which is denominated
as parametric, is how they specify the utility function. In the parametric approach,
denoted by V (xin|β), it is necessary to define a functional expression in advance,
establishing from the beginning the effect of each attribute against the others. However,
the non-parametric approach, denoted by V (xin|α), does not take a predetermined
form because it is constructed according to the information derived from the data. The
choice of the kernel function, k(x,x′), determines the RKHS Hk where the utilities
V (xin|α) ∈ Hk are searched.

The expression (6) shows that obtaining the Vi(x|α) functions requires estimat-
ing the parameter vector α = (α1, . . . , αN )>. Hastie et al. (2001); Zhu and Hastie
(2005); Ouyed and Allili (2018) propose a regularized function estimation in RKHS
for the estimation of α. This method suggests estimating the parameters by solving
the following optimisation problem

Minimise
α

N∑
n=1

I∑
i=1

L(yin, Vi(xin|α)) +
λ

2

I∑
i=1

‖Vi(x|α)‖2Hk
, (7)

where L(·) is a loss function that measures discrepancies between predicted and ob-
served classifications, λ is a regularization parameter that controls the trade-off be-
tween goodness of fit and complexity of the model and the norm of the utility functions
is computed in the space RKHS. Eq. (7) has the form of loss + penalty. The loss func-
tion L(·) allows many different ways of measuring the model adjustment. KLR uses the
negative value of the log-likelihood function as a loss function. This procedure is called
minimising Regularised Negative Log-Likelihood (RNLL) or, equivalently, maximising
PMLE.
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Now, we will derive the objective function for RNLL. But first, it is necessary to
introduce the Gram matrices Ki, which are defined as

[Ki]n,n′ = k(xin,xin′) for n, n′ = 1, . . . , N. (8)

The Gram matrices are symmetric and positive definite because k(·, ·) is a kernel
function. All computations are referred to these matrices, and it is necessary to in-

troduce the following notation. We denote by K
(n)
i the n−th column of Ki and by

Kn = {K(n)
i }Ii=1 the set of transformed attribute vectors for each decision-maker

n = 1, · · · , N .
Similar to what happens with the utility functions in RUM, the latent functions

Vi(x) are over-specified. Therefore, without prejudicing the explanatory capacity of
the model, it can be assumed that VI(x) = 0. KLR uses the softmax function to
provide estimates of the posterior probability of the alternatives given Kn, as follows:

P (i|Kn,α) = exp(Vi(xin|α))

1+
∑I−1

j=1 exp(Vj(xjn|α))
=

exp
(
K

(n)>
i α

)
1 +

∑I−1
j=1 exp

(
K

(n)>
j α

) , i ∈ {1, . . . , I − 1}

P (I|Kn,α) = 1−
∑I−1

i=1 P (i|Kn,α) =
1

1 +
∑I−1

j=1 exp
(
K

(n)>
j α

) . (9)

We can derive the log-likelihood function logL(α) by combining Eq. (9) with Eq. (4).
On the other side, the norm of the utilities can be expressed as ‖Vi(x,α)‖2Hk

= α>Kiα

and ‖VI(x)‖2Hk
= ‖0‖2Hk

= 0. Therefore, RNLL can be formulated as follows:

Minimise
α

I−1∑
j=1

−y(j)>Kjα+ 1>∆(α) +
λ

2

I−1∑
j=1

α>Kjα, (10)

where y(j) = (yj1, . . . , yjN )>, 1 = (1, . . . , 1)> is an N−dimensional vector of ones
and

∆(α) =


log
(

1 +
∑I−1

j=1 K
(1)
j α

)
log
(

1 +
∑I−1

j=1 K
(2)
j α

)
· · ·

log
(

1 +
∑I−1

j=1 K
(N)
j α

)



4. Computing interpretable economic information

The purpose of this section is to introduce a numerical procedure that allows to work
with the non-parametric utilities in order to calculate economic measures derived from
KLR.

The results of the RUM can be interpreted simply and intuitively. Similar to any
other statistical model, analysts can easily understand how the estimated RUM model
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works by studying the sign, magnitude, and statistical significance of the model’s
coefficients. These results can also be applied to conduct further analysis on travel
behaviour, obtaining indicators such as the marginal effect, elasticities, the Willingness
To Pay (WTP) and Value of Time (VOT) among other indicators. These applications
can be validated through explicit mathematical formulations and derivations, allowing
analysts to clearly understand what is happening.

In the parametric scheme, the linear utility functions are the most widely used.
These utility functions are stated as follows

Vin = Vi(xin|β) = β>xin =

K∑
k=1

βkxink, (11)

where the feature vector belongs to RK . The non-parametric approach presents the
fundamental advantage that its utility specification, stated in Eq. (6), allows very
diverse linear and non-linear phenomena to be approximated by the same kernel func-
tion, without the need to have prior knowledge of the phenomenon.

Note that the parametric and non-parametric utilities, Eq. (11) and Eq. (6), are
linear in the parameters but they use different feature vectors. In addition, the dimen-
sionality of these vectors fulfills K << N . In the context of a discrete choice model
the β parameters (11) are understandable while the α parameters are not. Table 1
shows some of the most widely used economic measures and how they are calculated
by linear MNL models. These formulae show how the estimated parameters β are
involved in their calculation. One relevant index used in the field of transport is the
VOT which is defined as the amount of money that an individual is willing to pay
to save one unit of time. In this case the formula for the linear case adopts a simple
expression as a function of the estimated parameters βt (coefficient associated with
the time attribute) and βc (parameter associated with the cost attribute).

However, despite this fact, both approaches allow the calculation of marginal effects,
elasticities, WTP and VOT among other indicators. This is the fact that is going to be
highlighted in this section. The key fact is that the definition of these economic mea-
sures is independent of the functional expression of the utility and is therefore defined
for non-parametric utilities. In the linear case these expressions have a simple form in
terms of the parameters β. In the case of using non-parametric utilities V (xin|α) the
partial derivatives can be calculated using the chain rule, which obtains a closed-form
expression, or using numerical differentiation.

To illustrate this numerical approach, we focus on the calculation of the WTP.
Let xin be the current value of the feature vector. Consider two scenarios where all
covariates take the same value except for the covariate under study that takes the
values x+

ink = xink + h and x−ink = xink − h. We denote these new attribute vectors
as x+

in and x−in, respectively. The Center Divided Difference Method approximates the
k−th partial derivative as follows:

∂Vi

∂xik
(xin|α) =

Vi(x
+
in|α)− Vi(x−in|α)

2h
+O(h2) (12)

In the same way, the partial derivative is calculated with respect to the cost attribute
ci. The calculation of WTPik applies twice the formula (12) and therefore requires
four evaluations of the Vi(x|α).
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Table 1. Definition of economic indicators and computation using linear MNL models

Description Definition Linear MNL

Marginal effects of feature xik
for alternative j

Mj,ik =
∂Pj
∂xik

=

{
Pi (1− Pi)βk if j = i
−PjPiβk if j 6= i

Arc elasticity of feature xik for
alternative j

Ej,ik =
∂Pj /∂xik

Pj
=

{
(1− Pi)βk if j = i
−Piβk if j 6= i

Willingness-to-pay for the at-
tribute k for alternative i

WTPik = −∂Vi /∂xik
∂Vi /∂ci

= −βk
βc

Value of time for alternative i V OTi =
∂Vi /∂ti
∂Vi /∂ci

=
βt
βc

As an alternative to the numerical methods, the chain rule can be applied for the
kernel function k(·, ·) under consideration in the case study. As an example, for the
isotropic Gaussian kernel used in the numerical tests, the following closed formula is
obtained:

∂Vi

∂xik
(xin|α) = −θ

N∑
n′=1

αn′(xink − xin′k) exp
(
−θ‖xin − xin′‖22

)
. (13)

Numerical differentiation methods prevent the development of specific formulae for
each of the chosen kernels k(·, ·). In the computational experiments we have made use
of these numerical techniques.

5. Numerical results

In this section some numerical experiments have been conducted to evaluate and
motivate the use of KLR against other alternatives. One of these alternatives is the
previously discussed linear MNL model. Moreover, since ML methods are gaining lot of
importance in the transport field, it has been decided to also include in this experiment
the SVM and the RF methods. The reason behind the selection of these ML methods
is the fact that they have achieved better results than the traditional MNL methods
on numerous recent studies, such as in Ballings et al. (2015); Hagenauer and Helbich
(2017); Zhao et al. (2020); Lhéritier et al. (2019); Wang and Ross (2018), where the
SVM and RF methods have achieved the highest accuracy rates.

This section consists of two parts. In the first part the four approaches have been
analysed and compared using synthetic data generated by Monte Carlo simulation
techniques. Through the use of simulated data, the actual results are known in advance,
and the outcome of the methods can be evaluated with respect to the expected results.
The second part focuses on assessing the four previous methods on a travel mode choice
problem using real data.
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All the numerical tests have been coded using Python 3 programming language.
The PyKernelLogit1 package, which has been developed by the authors, has been
used to estimate the MNL and KLR. This package extends the functionalities of a
previous Python package called PyLogit (Brathwaite and Walker, 2018) and provides
some extra functionalities that allow the estimation of discrete choice models based on
KLR. For the SVM and RF, the Scikit-learn package was employed (Pedregosa et al.,
2011).

5.1. Monte Carlo simulation experiment

Firstly, a Monte Carlo simulation study was designed, in order to control the error
term and the utility specification. These experiments consider I = 3 alternatives and
two explanatory variables. In this study several models have been generated in which
the utility of the alternative i for the individual n is given by the expression:

Uin = V (xin1, xin2) + εin; with i ∈ {1, 2, 3}, (14)

where the error terms εin are i.i.d. random variables drawn from a Gumbel distribution
with scale parameter µ and location parameter 0. These models are the ground-truth
defined to compare the performance of the four approaches that are being analysed.

For the simulation experiment three systematic utilities have been supposed:

V (xin1, xin2) = β1xin1 + β2xin2 Linear (15)

V (xin1, xin2) = xin1
β1xin2

β2 Cobb-Douglas (CD) (16)

V (xin1, xin2) = min{β1xin1, β2xin2} Minimum (17)

For each of the previous models three pairs of parameters have been considered,
being the parameter β1 = 1 and β2 ∈ {0.5, 1, 2}. Moreover, each of these nine models
has been defined using two levels of uncertainty, by means of the scale parameter
µ ∈ {0.2, 0.02}. Therefore, 18 different models have been considered. For each model,
a total of N = 1000 individuals were generated using a uniform distribution of xin
on the square [0, 1]× [0, 1] for i = 1, 2, 3. Finally, to obtain more accurate results, we
have generated 200 samples of each model, 100 of them have been used to train the
methods which have been compared in this experiment, whereas the other 100 have
been used to test the performance of those methods.

In this numerical experiment four different approaches have been compared: MNL,
KLR, SVM and RF. The MNL has been estimated using the linear utility specification
defined on Eq. (18), where the vector of parameters β has been estimated using MLE.
The intercept parameter of the first alternative is always fixed to 0, i.e. β1

0 = 0.

V (x|βi) = βi0 + βi1x1 + βi2x2 (18)

Concerning KLR, it has been estimated using the utility specification defined on
Eq. (19), where the α vector of parameters have also been estimated using MLE. This
specification uses an isotropic Gaussian kernel with θ = 1. An intercept parameter,
βi0, has also been considered as in the previous method. Note that Eq. (6) considers
different utility functions Vi(x|α) for all i ∈ C. Nevertheless, on the numerical ex-
periments we have assumed that all utility functions for the alternatives are identical

1PyKernelLogit is available on the repository: https://github.com/JoseAngelMartinB/PyKernelLogit
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except for the interception term, i.e. Vi(x|α) = βi0 +V (x|α) for all i ∈ C. To this end,
the same points xin should be taken in each alternative. These points are denoted by
xm, and they are generated as a square grid of 30× 30 elements taken uniformly from
the square [0, 1]× [0, 1]. Finally, the utility function is expressed as follows:

Vi(x|α) = βi0 +
∑
m

αm exp
(
−θ‖x− xm‖22

)
. (19)

The SVM is a ML method for binary classification problems. The idea is to map
the input vector into a very high-dimension feature space in which linear decision sur-
faces can be constructed (Cortes and Vapnik, 1995). Since they are binary classifiers,
a one-over-rest (OvR) strategy has been used, which involves training a single clas-
sifier per alternative and selecting the alternative whose classifier reports the highest
confidence score. Hence, a SVM classifier has been estimated using a Gaussian ker-
nel. The regularisation hyperparameter has been adjusted using a random search with
1000 iterations where the possible values for the hyperparameter are sampled from a
uniform distribution in the range [0, 10]. The kernel coefficient hyperparameter is set
to 1/(number of features · variance of the feature vector).

Finally, RF (Breiman, 2001) is an ensemble method which combines a set of decision
tree predictors that are trained in parallel using bootstrap samples. A subset of the
variables in the model determines each split at the nodes. The prediction of the selected
alternatives is determined by the majority voting among all the individual decision
trees. Here, two hyperparameters have been adjusted by using a random search with
1000 iterations over a discrete uniform distribution: the first one is the number of
estimators, which has been adjusted using the range [1, 200]; and the second one is the
maximum number of features to consider when looking for the best split, which has
been adjusted by using the range [1, 6].

5.1.1. Model adjustment

All the previous methods have been used to estimate each one of the 100 train sam-
ples generated for each one of the 18 different models. For the MNL and KLR methods
a goodness of fit indicator called McFadden R-squared value has been computed as

ρ2 = 1 − LL(Θ̂)
LL(0) , where Θ̂ is the estimate of the vector of parameters. Tables 2 and 3

report the McFadden R-squared value for the MNL and KLR methods and the CPU
time needed to estimate all the methods. For each measure, the mean value of the 100
train samples and the standard deviation is reported.

In Table 2 (µ = 0.02) the effect of the error term is small, and therefore, the gen-
erated data contains more information about the phenomenon. As it can be observed
by comparing the goodness of fit ρ2 index, the KLR method outperforms the MNL
method as it is able to generalise better and, consequently, it is possible to determine
whether the model is non-linear and to adapt better to it. In this way, KLR gives bet-
ter results for the Cobb-Douglas and minimum models. In case of the linear models,
both methods obtain the same results. Table 3 (µ = 0.2) shows similar results but
the differences are less significant because the effect of the error term is bigger, and
therefore, the uncertainty strongly influences the decision process.

One disadvantage that has been highlighted in the literature is the high compu-
tational cost of KLR (Ouyed and Allili, 2018; Zhu and Hastie, 2005), leading to the
development of so-called sparse KLR. In this work, it has been tested the Newton’s
method and BFGS algorithms, which are the canonical methods for solving the MLE
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Table 2. Estimation process assessment (Case µ = 0.02). The mean value of the train samples and the

standard deviation (between brackets) is reported.

Utility
function

Parameters
Goodness of fit (ρ2) CPU time (s)
MNL KLR MNL KLR SVM RF

CD

β1 = 1
β2 = 0.5

0.77
(0.02)

0.90
(0.01)

0.16
(0.01)

1.34
(0.48)

0.01
(0.00)

0.35
(0.01)

β1 = 1
β2 = 1

0.74
(0.02)

0.89
(0.02)

0.16
(0.01)

0.91
(0.24)

0.01
(0.00)

0.09
(0.00)

β1 = 1
β2 = 2

0.70
(0.02)

0.84
(0.02)

0.16
(0.01)

1.21
(0.24)

0.02
(0.00)

0.24
(0.00)

Linear

β1 = 1
β2 = 0.5

0.93
(0.01)

0.93
(0.01)

0.18
(0.01)

1.24
(0.36)

0.01
(0.00)

0.36
(0.01)

β1 = 1
β2 = 1

0.94
(0.01)

0.94
(0.01)

0.18
(0.01)

1.47
(0.37)

0.02
(0.00)

0.19
(0.00)

β1 = 1
β2 = 2

0.97
(0.01)

0.97
(0.01)

0.19
(0.01)

1.79
(0.66)

0.02
(0.00)

0.19
(0.00)

Minimum

β1 = 1
β2 = 0.5

0.55
(0.02)

0.81
(0.02)

0.16
(0.01)

1.90
(0.50)

0.02
(0.00)

0.36
(0.01)

β1 = 1
β2 = 1

0.56
(0.02)

0.88
(0.02)

0.16
(0.01)

1.49
(0.45)

0.02
(0.00)

0.42
(0.01)

β1 = 1
β2 = 2

0.57
(0.02)

0.89
(0.01)

0.16
(0.01)

2.19
(0.36)

0.01
(0.00)

0.35
(0.01)

problem. However, by using the L-BFGS-B optimisation algorithm (Byrd et al., 1995),
it has been achieved a limited memory usage and a lower computational time com-
paring to the BFGS or Newton’s method. More concretely, it is reduced by a factor
ranging from 8 to 15. For the sake of simplicity, these results are not reported in
the paper and all the numerical results have been calculated applying the L-BFGS-B
algorithm. This highlight allows the practical application of the KLR to the field of
transport since the data is usually collected through surveys, whose size is moderate.
It can also be noticed that the computation time for the KLR is considerably reduced
when uncertainty increases, for example in the case µ = 0.2.

5.1.2. Model assessment

Once the four methods have been adjusted, they have been assessed using the 100
test samples generated for each model. It has been decided to use accuracy to mea-
sure the classification performance of the different methods. The accuracy measures
the average number of correctly classified observations. In Tables 4 and 5 the mean
accuracy for each method over the 100 test samples is computed. Due to the fact that
the test data has been generated by a Monte Carlo simulation, the maximum accuracy
which can be achieved by any method on the test set is known beforehand. As far as
we know, this is the first time that this index has been reported within comparative
method studies. The maximum accuracy is defined as the percentage of observations
in which users would make the same choice regardless of whether it is considered the
whole utility function or only the systematic part of the utility function. That is, the
random term does not change the decision. Since RUM and ML methods are only ca-
pable of learning the systematic part of the utility, then, it is impossible to determine
the random part of that utility, which produces part of the misclassification error. This
index has been numerically calculated from the 100 test samples generated by simula-
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Table 3. Estimation process assessment (Case µ = 0.2). The mean value of the train samples and the standard

deviation (between brackets) is reported.

Utility
function

Parameters
Goodness of fit (ρ2) CPU time (s)
MNL KLR MNL KLR SVM RF

CD

β1 = 1
β2 = 0.5

0.26
(0.02)

0.28
(0.02)

0.15
(0.01)

0.73
(0.05)

0.03
(0.00)

0.36
(0.01)

β1 = 1
β2 = 1

0.23
(0.02)

0.26
(0.02)

0.15
(0.01)

0.71
(0.06)

0.03
(0.00)

0.45
(0.01)

β1 = 1
β2 = 2

0.18
(0.02)

0.22
(0.02)

0.15
(0.01)

0.79
(0.11)

0.03
(0.00)

0.36
(0.01)

Linear

β1 = 1
β2 = 0.5

0.39
(0.02)

0.38
(0.02)

0.15
(0.01)

0.69
(0.07)

0.03
(0.00)

0.11
(0.00)

β1 = 1
β2 = 1

0.48
(0.02)

0.47
(0.02)

0.16
(0.01)

0.68
(0.06)

0.02
(0.00)

0.35
(0.01)

β1 = 1
β2 = 2

0.64
(0.02)

0.64
(0.02)

0.16
(0.01)

0.75
(0.11)

0.03
(0.00)

0.34
(0.01)

Minimum

β1 = 1
β2 = 0.5

0.10
(0.01)

0.12
(0.02)

0.15
(0.01)

0.73
(0.08)

0.03
(0.00)

0.23
(0.00)

β1 = 1
β2 = 1

0.22
(0.02)

0.28
(0.02)

0.15
(0.01)

0.71
(0.07)

0.03
(0.00)

0.27
(0.00)

β1 = 1
β2 = 2

0.26
(0.02)

0.33
(0.02)

0.15
(0.01)

0.88
(0.13)

0.03
(0.00)

0.26
(0.00)

tion. Therefore, a t-test was used to determine if the mean accuracy reported by each
of the methods is significantly different from the maximum accuracy achievable on the
test set. Several levels of statistical significance have been defined and are denoted by
using stars (***<0.001, **<0.01, *<0.05). Finally, the 95% confidence interval of the
accuracy has been computed using the simulation results for each method.

Analysing the results provided on Tables 4 and 5, several facts can be observed.
Firstly, only the MNL and KLR methods are capable of achieving the maximum
accuracy on some models, i.e. the applied t-test fails to reject the null hypothesis that
the mean accuracy is equal to the mean maximum accuracy, mostly on the results in the
Table 5. The maximum accuracy is obtained by the MNL method when the data meet
all the hypotheses (linear utilities). The KLR obtains the maximum accuracy for both
the linear case and the non-linear Cobb-Douglas utilities. Note that the specification
used in KLR is unique for all models and it approximates both phenomenons. This
highlight releases the modeller from having to specify the functional expression of the
utility, since it is derived from the data.

MNL obtains better results than any other method for the linear models. MNL also
obtains better results than RF for Cobb-Douglas models. These results contrasts with
those shown in several works such as Ballings et al. (2015); Hagenauer and Helbich
(2017); Zhao et al. (2020); Lhéritier et al. (2019); Wang and Ross (2018), where ML
methods outperformed MNL. The reason for this is that the samples used in this
experiment consists of synthetic data where the hypotheses of the MNL models are
satisfied. Nevertheless, Wang et al. (2017) obtain very similar results to those presented
in this experiment using two real datasets, as the MNL obtains a similar prediction
accuracy to the tree-based ML algorithms but it gets a higher accuracy than the
kernelized SVM. When there is a higher level of uncertainty as shown in Table 5, i.e.
the data contain limited information about the underlying utility functions, then the
linear approximations used in the MNL work properly and their results are closer to
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Table 4. Assessment of the model’s accuracy (Case µ = 0.02). The mean value obtained on the test samples

and the 95% confidence interval (between brackets) is reported.

Utility
function

Parameters
Accuracy (%) Maximum

accuracy (%)MNL KLR SVM RF

CD

β1 = 1
β2 = 0.5

89.72 ***
(87.96, 91.48)

95.02***
(93.70, 96.35)

92.11***
(90.54, 93.68)

88.75 ***
(86.35, 91.14)

95.51
(94.17, 96.85)

β1 = 1
β2 = 1

88.94 ***
(86.94, 90.93)

94.78
(93.44, 96.13)

91.92***
(90.04, 93.81)

87.43 ***
(85.36, 89.51)

94.94
(93.58, 96.30)

β1 = 1
β2 = 2

88.07 ***
(86.23, 89.90)

92.01**
(90.28, 93.74)

89.23***
(87.16, 91.30)

86.49 ***
(83.99, 88.98)

92.35
(90.67, 94.03)

Linear

β1 = 1
β2 = 0.5

96.39 *
(95.23, 97.55)

96.36**
(95.20, 97.52)

93.41***
(91.58, 95.24)

88.86 ***
(86.84, 90.88)

96.59
(95.57, 97.61)

β1 = 1
β2 = 1

97.04 **
(95.99, 98.09)

97.04**
(96.01, 98.08)

93.81***
(92.06, 95.57)

88.37 ***
(85.95, 90.79)

97.24
(96.25, 98.22)

β1 = 1
β2 = 2

98.15 **
(97.33, 98.97)

98.04***
(97.22, 98.85)

94.14***
(92.42, 95.86)

89.16 ***
(87.22, 91.09)

98.30
(97.57, 99.02)

Minimum

β1 = 1
β2 = 0.5

78.80 ***
(76.48, 81.13)

91.01***
(89.19, 92.82)

87.21***
(85.45, 88.97)

88.21 ***
(86.01, 90.41)

92.43
(91.04, 93.81)

β1 = 1
β2 = 1

79.64 ***
(77.05, 82.24)

93.97***
(92.36, 95.57)

89.57***
(87.4, 91.74)

89.78 ***
(87.43, 92.14)

95.50
(94.16, 96.84)

β1 = 1
β2 = 2

79.83 ***
(77.53, 82.13)

94.42***
(92.90, 95.93)

90.11***
(88.07, 92.14)

90.52 ***
(88.39, 92.65)

96.32
(95.08, 97.56)

Note: ***<0.001, **<0.01, *<0.05

those of the ML or KLR methods.
For all of the 18 models considered, KLR provides better results than the other ML

methods analysed (SVM and RF), which are commonly the best methods in literature.
Moreover, KLR also achieves better results than the MNL method for the non-linear
models, i.e. the Cobb-Douglas and the minimum model. In the case of the linear mod-
els, the results obtained by KLR and MNL methods are statistically indistinguishable
and the 95% confidence interval overlaps between both algorithms. This confirms the
capability of the KLR models to adapt to non-linear phenomena, achieving accuracy
results that are very close to the maximum accuracy of the simulation data.

5.1.3. Computing Willingness To Pay economic indicator

One important disadvantage of ML methods highlighted in the literature is their
lack of interpretability. Some of these methods do not provide probabilities, such as
SVM, and consequently cannot calculate some indicators like elasticities or marginal
effects. In other methods, such as RF, utility functions are not used and therefore the
WTP or VOT indicators cannot be estimated. KLR does not present those issues and,
for this reason, in this section it will be assessed its advantages and disadvantages in
the estimation of the WTP indicator.

The MNL and KLR methods have been evaluated in the computation of the WTP
economic indicator. As it is shown in Table 1, WTP can be computed as the partial
derivative of the utility function. In the case of the MNL methods the partial derivative
of the utility functions results into a closed formula which is specified in the previous
table. However, for the KLR it is necessary to use numerical numerical differentiation
methods to compute the WTP, which allows any arbitrary kernel function k(x,x′) to
be considered.

The main advantage of working with simulated data is that it allows to compute
the real WTP value for each of the generated samples. By applying the WTP formula
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Table 5. Assessment of the model’s accuracy (Case µ = 0.2). The mean value obtained on the test samples

and the 95% confidence interval (between brackets) is reported.

Utility
function

Parameters
Accuracy (%) Maximum

accuracy (%)MNL KLR SVM RF

CD

β1 = 1
β2 = 0.5

63.92 ***
(61.02, 66.82)

65.12
(62.06, 68.19)

63.83 ***
(60.69, 66.98)

61.43 ***
(58.28, 64.59)

65.28
(62.32, 68.24)

β1 = 1
β2 = 1

62.52 ***
(59.40, 65.63)

63.41
(60.55, 66.27)

59.28 ***
(59.28, 65.31)

59.69 ***
(56.67, 62.71)

63.65
(60.76, 66.53)

β1 = 1
β2 = 2

59.14 **
(55.99, 62.29)

59.48
(56.72, 62.25)

55.42 ***
(55.42, 62.03)

56.2 ***
(52.79, 59.61)

59.86
(56.83, 62.9)

Linear

β1 = 1
β2 = 0.5

70.51
(67.59, 73.43)

70.50
(67.87, 73.12)

69.62 ***
(66.81, 72.43)

66.85 ***
(64.09, 69.62)

70.59
(67.94, 73.24)

β1 = 1
β2 = 1

75.03
(72.32, 77.74)

75.01
(72.48, 77.54)

73.83 ***
(70.85, 76.81)

71.52 ***
(68.79, 74.25)

75.25
(72.59, 77.91)

β1 = 1
β2 = 2

83.24
(80.95, 85.54)

83.32
(81.01, 85.64)

82.14 ***
(79.78, 84.49)

79.58 ***
(77.21, 81.95)

83.44
(81.01, 85.86)

Minimum

β1 = 1
β2 = 0.5

50.93 ***
(47.85, 54.01)

53.13 **
(49.78, 56.48)

51.44 ***
(48.03, 54.85)

49.21 ***
(46.00, 52.42)

53.83
(50.53, 57.12)

β1 = 1
β2 = 1

61.16 ***
(58.36, 63.96)

64.95
(62.12, 67.78)

63.02 ***
(60.00, 66.03)

61.07 ***
(57.73, 64.42)

65.26
(62.44, 68.08)

β1 = 1
β2 = 2

63.24 ***
(60.37, 66.12)

67.34 ***
(64.6, 70.07)

65.3 ***
(62.50, 68.1)

64.17 ***
(61.06, 67.27)

68.16
(65.02, 71.29)

Note: ***<0.001, **<0.01, *<0.05

to each model the following expressions can be obtained,

WTPCobb-Douglas = −β1xn2

β2xn1
, (20)

WTPLinear = −β1

β2
, (21)

WTPMinimum =

{
@ if β2xn2 ≥ β1xn1

0 if β2xn2 < β1xn1
. (22)

The utility of each alternative is different for each decision-maker depending on their
feature vector. Hence, each decision-maker would be willing to pay a different amount
for the same increase in an attribute for a given alternative. For this reason, this
simulation study considers for the values of the feature vector the points (0.25, 0.75),
(0.50, 0.50) and (0.75, 0.25).

Tables 6 and 7 show the obtained WTP values for the first alternative. For each
of the three points being considered, it is represented the mean and its standard
deviation of the WTP value computed over the 100 train samples using the MNL and
KLR methods. Finally, the real WTP column contains the theoretical WTP value
for each point computed using expressions (20) to (22). Notice that some theoretical
WTP values are not defined on some points for the minimum models because the
denominator is zero in the corresponding WTP formula.

Analysing those tables, it can be observed that the WTP value computed using
the MNL is independent of the vector xin. Roughly speaking, linear MNL estimates
an average WTP value over the domain of xin. In this way, linear MNL allow the
theoretical values of the WTP for non-linear utilities in the point x̄in to be estimated
reasonably well, where x̄in is the mean value of the attribute vector xin in the sample.
This can be observed in the results obtained for the point x̄in = (0.50, 0.50) using
Cobb-Douglas and minimum utilities, where the theoretical values are approximated
but the results are slightly worse than those obtained with KLR. It should be noticed
that the MNL model is not capable of capturing the non-linearity of these models and
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Table 6. Comparison of MNL and KLR models for obtaining WTP economic indicator (Case µ = 0.02). The

mean value obtained on the train samples and the standard deviation (between brackets) is reported.

Utility
function

Parameters
P1 (0.25, 0.75) P2 (0.50, 0.50) P3 (0.75, 0.25)

MNL KLR
Real
WTP

MNL KLR
Real
WTP

MNL KLR
Real
WTP

CD

β1 = 1
β2 = 0.5

-1.60
(0.11)

-5.80
(2.21)

-6.00
-1.60
(0.11)

-2.03
(0.19)

-2.00
-1.60
(0.11)

-0.63
(0.05)

-0.67

β1 = 1
β2 = 1

-1.00
(0.06)

-3.02
(0.37)

-3.00
-1.00
(0.06)

-1.00
(0.04)

-1.00
-1.00
(0.06)

-0.34
(0.04)

-0.33

β1 = 1
β2 = 2

-0.65
(0.05)

-1.56
(0.10)

-1.50
-0.65
(0.05)

-0.50
(0.04)

-0.50
-0.65
(0.05)

-0.20
(0.06)

-0.17

Linear

β1 = 1
β2 = 0.5

-2.01
(0.07)

-2.05
(0.18)

-2.00
-2.01
(0.07)

-1.94
(0.09)

-2.00
-2.01
(0.07)

-2.04
(0.12)

-2.00

β1 = 1
β2 = 1

-1.00
(0.02)

-1.00
(0.04)

-1.00
-1.0

(0.02)
-1.00
(0.03)

-1.00
-1.0

(0.02)
-1.01
(0.05)

-1.00

β1 = 1
β2 = 2

-0.50
(0.01)

-0.50
(0.03)

-0.50
-0.50
(0.01)

-0.51
(0.02)

-0.50
-0.50
(0.01)

-0.50
(0.03)

-0.50

Minimum

β1 = 1
β2 = 0.5

-0.53
(0.05)

-7.73
(2.66)

@ -0.53
(0.05)

-0.01
(0.11)

0.00
-0.53
(0.05)

0.00
(0.06)

0.00

β1 = 1
β2 = 1

-1.00
(0.08)

8.02
(2.78)

@ -1.00
(0.08)

-0.99
(0.08)

@ -1.00
(0.08)

0.13
(0.04)

0.00

β1 = 1
β2 = 2

-1.89
(0.17)

4.10
(119.48)

@ -1.89
(0.17)

7.83
(193.73)

@ -1.89
(0.17)

-0.12
(0.04)

0.00

produces biased estimates when estimating the WTP at points which are distant from
xin. Nevertheless, the linear MNL method is more efficient than KLR in the estimation
of the WTP for the linear models, although the difference is not very noticeable. These
estimates are unbiased in all cases with a standard error for the estimates of an order
of magnitude 10−2 and 10−1 for the cases µ = 0.2 and µ = 0.02.

The advantage of KLR over linear MNL method appears when the decision process
is driven by non-linear utilities and it is desired to calculate the value of the WTP
at a point distant from x̄in. This statement can be observed for Cobb-Douglas and
minimum utilities at the points (0.25, 0.75) and (0.75, 0.25). KLR is capable of adapt-
ing to linear and non-linear phenomena and produces (apparently) unbiased WTP
estimates for both points in the three utility functions. A large error of the estimate
for KLR is associated with the non-existence of WTP in the minimum function. This
behaviour is also exhibited on the standard deviation values for the Cobb-Douglas
model with β2 = 0.5 at point P1 (0.25, 0.75), which may be caused because the value
of the denominator in Equation (20) is close to zero at point P1.

Next, with a new experiment an actual problem is evaluated to identify whether
results with non-synthetic data still satisfy our theoretical approach.

5.2. Models assessment on a travel mode choice problem

In this section, a travel mode choice application is undertaken with the goal of
evaluating the previous methods on real data. In this scenario, as opposed to the
previous experiments, the actual values of the parameters to be estimated and the
WTP are unknown, thus, it is difficult to know whether a model estimates better or
worse the behaviour of the decision-makers. The aim is therefore to check whether new
situations or issues arise that have not been covered using the synthetic data.

The data used for this evaluation come from a case study involving a travel mode
choice problem using revealed preference data collected in Switzerland between 2009
and 2010 (Atasoy et al., 2013). The main goal of this survey was to collect data
for analysing the travel behaviour of people in low-density areas. The respondents
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Table 7. Comparison of MNL and KLR models for obtaining WTP economic indicator (Case µ = 0.2). The

mean value obtained on the train samples and the standard deviation (between brackets) is reported.

Utility
function

Parameters
P1 (0.25, 0.75) P2 (0.50, 0.50) P3 (0.75, 0.25)

MNL KLR
Real
WTP

MNL KLR
Real
WTP

MNL KLR
Real
WTP

CD

β1 = 1
β2 = 0.5

-1.60
(0.25)

-5.94
(36.28)

-6.00
-1.60
(0.25)

-1.70
(0.16)

-2.00
-1.60
(0.25)

-0.64
(0.12)

-0.67

β1 = 1
β2 = 1

-0.98
(0.14)

-3.34
(1.18)

-3.00
-0.98
(0.14)

-0.99
(0.10)

-1.00
-0.98
(0.14)

-0.32
(0.12)

-0.33

β1 = 1
β2 = 2

-0.67
(0.11)

-1.49
(0.84)

-1.50
-0.67
(0.11)

-0.59
(0.14)

-0.50
-0.67
(0.11)

-0.20
(0.31)

-0.17

Linear

β1 = 1
β2 = 0.5

-2.05
(0.29)

-1.93
(0.47)

-2.00
-2.05
(0.29)

-2.05
(0.20)

-2.00
-2.05
(0.29)

-1.99
(0.41)

-2.00

β1 = 1
β2 = 1

-1.01
(0.10)

-1.00
(0.12)

-1.00
-1.01
(0.10)

-1.01
(0.06)

-1.00
-1.01
(0.10)

-1.05
(0.13)

-1.00

β1 = 1
β2 = 2

-0.50
(0.05)

-0.51
(0.06)

-0.50
-0.50
(0.05)

-0.50
(0.04)

-0.50
-0.50
(0.05)

-0.54
(0.08)

-0.50

Minimum

β1 = 1
β2 = 0.5

-0.50
(0.13)

-2.85
(16.09)

@ -0.50
(0.13)

-0.44
(0.11)

0.00
-0.50
(0.13)

0.32
(0.19)

0.00

β1 = 1
β2 = 1

-1.02
(0.15)

12.53
(61.71)

@ -1.02
(0.15)

-1.00
(0.11)

@ -1.02
(0.15)

0.06
(0.07)

0.00

β1 = 1
β2 = 2

-1.94
(0.32)

-60.46
(940.25)

@ -1.94
(0.32)

-3.46
(1.34)

@ -1.94
(0.32)

-0.22
(0.01)

0.00

were asked to register all the trips performed during a specified day. The possible
values for the choice variable are: public transport (train, bus, tram, etc.), private
modes (car, motorbike, etc.) and soft modes (bike, walk, etc.). During a preprocessing
step, observations with unknown selected alternative were excluded, obtaining a final
dataset with 1880 observations.

In this second experiment it has been decided to use the the MNL utility specifica-
tion proposed by Bierlaire (2018), where the utility functions are defined as:

VPT =βTime Fulltime ∗ TimePT ∗ fulltime +

βTime Other ∗ TimePT ∗ notfulltime +

βCost ∗MarginalCostPT

VCar =βASC Car+

βTime Fulltime ∗ TimeCar ∗ fulltime +

βTime Other ∗ TimeCar ∗ notfulltime +

βCost ∗ CostCarCHF

VSM =βASC SM+

βDist Male ∗ distance km ∗male +

βDist Female ∗ distance km ∗ female +

βDist Unreported ∗ distance km ∗ unreportedGender

(23)

With respect to KLR, it has been estimated using the same utility specification as in
the previous experiment, which is defined on Eq. (19). The feature vector xin has been
scaled to the range [0, 1] because it has been used an isotropic Gaussian kernel. Finally,
concerning the SVM and RF methods, their hyperparameters have been adjusted using
a random search with 1000 iterations using the same configuration as in the previous
experiment.

Table 8 shows the results that have been obtained in this experiment. Since only
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one sample is available, a resampling-based method such as cross validation (Kohavi,
1995) should be applied for assessing the effectiveness of the models. More concretely,
it was decided to use a 5× 2 cross validation procedure, as suggested by Dietterich
(1998), which consists of executing 5 times a 2-fold cross validation technique. For
each of the metrics in the table (goodness of fit, CPU time and accuracy value), it has
been reported the mean value of the 5×2 cross validation procedure and the standard
deviation.

Table 8. Assessment of the models on a travel mode choice problem using real data. The mean value obtained

on the 5×2 cross validation and the standard deviation (between brackets) is reported.

MNL KLR SVM RF

Goodness of fit (ρ2)
0.41

(0.02)
0.44

(0.02)
- -

CPU time (s)
0.18

(0.03)
9.13

(2.68)
0.02

(0.00)
0.17

(0.07)

Accuracy (%)
70.06
(0.87)

72.93
(0.90)

70.23
(1.08)

76.32
(1.14)

Analysing Table 8 some conclusions can be derived. Firstly, it can be observed
that KLR has a higher computational cost compared to other methods, however, this
cost is affordable. It should be noticed that all the ML methods have obtained higher
accuracy results than the MNL method. In the case of the SVM the accuracy is similar
than the MNL method. The RF has achieved the best accuracy score, as shown by
numerous recent studies (Ballings et al., 2015; Hagenauer and Helbich, 2017; Zhao
et al., 2020; Lhéritier et al., 2019; Wang and Ross, 2018). These results evidence
that using real data the error terms not always follow the i.i.d. Gumbel distribution.
Finally, the KLR method has achieved a better accuracy result than the MNL and
SVM methods. It should be taken into account that the KLR method avoids the
difficulty of establishing a functional expression for utilities beforehand, simplifying
its use and enabling non-linear behaviour to be modelled. Note that if the dataset
presents a significant imbalance between alternatives, then it is also helpful to calculate
other measures, such as the sensitivity of the method, in order to evaluate properly
its performance.

To conclude, the previous MNL and KLR methods have been used to estimate the
VOT. It has been computed the VOT for full-time and non full-time employees that
used the private transport alternative. Using the estimated MNL model, the VOT
values obtained are 6.40 CHF (Swiss franc)/hour for full-time employees and 2.12
CHF/hour for non full-time employees. These values are similar to the ones reported
in Bierlaire (2018) using a nested logit model. In this work, the author stated that the
values obtained were too low and attributed this to a poor specification of the model’s
utilities. This highlights again the problem that KLR aims to avoid, the necessity of
having to specify the functional expression of the utility functions.

Unlike the MNL method, KLR obtains a different value of the VOT for each
decision-maker. This novel aspect can been incorporated to evaluate confidence in-
tervals for the VOT, obtaining the histograms presented in Figure 1(a) and 1(b) for
full-time and not full-time workers, respectively. The average values obtained for each
alternative are 7.75 CHF/hour and 11.23 CHF/hour. These values are larger than those
obtained using the MNL method and, therefore, more in line with our expectations.
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Figure 1. Distribution of the value of time in the sample using KLR

6. Conclusions

In this paper, KLR method has been numerically evaluated against the MNL
method and other prominent ML methods for discrete choice analysis, such as SVM
and RF. Two important conclusions have been obtained: the first one is that KLR is
able to reach the maximum accuracy for both linear models and non-linear models for
the uncertainty level with parameter µ = 0.2, whereas MNL only reaches this maxi-
mum accuracy on linear models. Hence, KLR is capable of modelling non-parametric
specifications of the utility functions, relieving the analyst from specifying a functional
relationship between the features in advance. It is noteworthy that with synthetic data
the RF method performs worse than the KLR. The second highlight is that it appears
that the KLR obtains unbiased WTP estimates for both linear and non-linear models,
whilst the linear MNL only obtains unbiased WTP estimates for linear models.

This numerical study has been complemented with an application to a real travel
mode choice problem. Three highlights have been obtained: i) The application of the
L-BFGS-B optimisation algorithm produces a lower computational cost for the estima-
tion of the KLR method and allows its application to real problems (a disadvantage
that was foreseen a priori); ii) RF achieves the highest accuracy, followed by KLR.
The fact that RF is one of the best methods of ML in various applications has been
widely reported in the literature, however, RF does not employ utility functions and
consequently it cannot calculate economic indices like the WTP; and iii) The KLR
model allows to compute the VOT index for all the decision-makers in the sample.

The utility functions are a powerful tool for modelling user behaviour in the applica-
tions, such as combined traffic assignment models (Adnan et al., 2009; Cantelmo and
Viti, 2019). Parametric utilities allow, through analytical manipulation, to understand
how the different assumptions of the utility model affect the model’s outcomes. This
is a limitation of data-based models such as KLR. A second limitation of the KLR
methodology is the choice of the kernel function, which might be a source of bias,
affecting the results obtained. A plausible solution to this problem is to include the
kernel function as an additional hyperparameter to be adjusted before the model is
estimated.

Our numerical experiments provide strong evidence for practical effectiveness of
non-parametric utilities. Some theoretical aspects should be addressed in depth in
future work, such as the introduction of a general error term in the non-parametric
utilities. One approach is to consider the systematic utility as a Gaussian Process,
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which leads to a special type of MXL model. A priori, this approach has the advantage
that it does not require the specification of a distribution of varying tastes across
individuals, which differs from the parametric MXL. Efficient maximum simulated
likelihood estimation methods should be developed for this purpose. For this reason,
it might result interesting to expand the numerical comparison presented with more
sophisticated approaches, such as MXL.
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Garćıa-Ródenas, R. and M. López-Garćıa (2015). Utilization of reproducing kernel
hilbert spaces in dynamic discrete choice models: An application to the high-speed
railway timetabling problem. In Transportation Research Procedia, Volume 10, pp.
544–553.

Hagenauer, J. and M. Helbich (2017). A comparative study of machine learning classi-
fiers for modeling travel mode choice. Expert Systems with Applications 78, 273–282.

Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical Learn-
ing. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.

Kneib, T., B. Baumgartner, and W. J. Steiner (2007). Semiparametric multinomial
logit models for analysing consumer choice behaviour. AStA Advances in Statistical
Analysis 91 (3), 225–244.

Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estima-
tion and Model Selection. In Proceedings of the 14th International Joint Conference
on Articial Intelligence (IJCAI), Montreal, Canada, pp. 1137–1145.

Langrock, R., N. B. Heidenreich, and S. Sperlich (2014). Kernel-based semiparametric
multinomial logit modelling of political party preferences. Statistical Methods and
Applications 23 (3), 435–449.
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